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A b s t r a c t. The study was carried out in order to clarify the 
effects of different water and irrigation conditions on crop models 
and remote sensing assimilation results. It involved taking winter 
wheat from 17 test sites in Henan Province as the research object 
and calibrating the World Food Studies model. The ensemble 
Kalman filter algorithm was used to calibrate the two modes and 
Moderate-resolution Imaging Spectroradiometer-Leaf Area Index 
of the calibrated world food studies model. The study found that 
the average error of the world food studies model for simulating 
flowering and maturity periods is within 2 days, the R2 of the leaf 
area index calibration results is between 0.87-0.98, and the R2 and 
root mean square error of the verification results are 0.77 and 1.06 
respectively. Under the latent model, the R2 of the  world food 
studies model taking account of the water supply situation and the 
assimilation results without taking account of the water supply 
situation are 0.50 and 0.48, respectively. In the water restric-
tion mode, the R2 increased from 0.79 to 0.86 compared with the 
assimilation results where the water supply was not considered. 
The results show that: depending on the water supply of different 
regions, selecting the corresponding assimilation parameters can 
effectively improve the prediction accuracy of crop models and 
remote sensing assimilation for wheat yields under different water 
and irrigation conditions.

Keywords: wheat, crop model, remote sensing, data 
assimilation, yield forecast, water restriction

INTRODUCTION

The dynamic monitoring and yield prediction of crop 
growth on a regional scale are of great significance for 
ensuring food security and formulating agricultural poli-
cies (Lipper et al., 2014). As a mechanism model, the crop 
growth model can simulate the physiological processes of 
crop photosynthesis, respiration, dry matter distribution, 
etc., in a specific environment. It has been widely used in 
crop yield prediction (Morell et al., 2016), field manage-
ment decision-making (Zhang et al., 2018), agricultural 
production potential evaluation (Tang et al., 2018), climate 
change impact assessment (Vanli et al., 2019) and other 
fields. However, due to the heterogeneity of the surface 
environment, it is difficult to obtain some parameters when 
the model is applied to a particular region, which limits the 
application of the model on the regional scale (Pan et al., 
2019). With the development of remote sensing technology, 
monitoring vegetation growth has become increasingly via-
ble (Houborg et al., 2015). Remote sensing information can 
be used to monitor crop growth and also to determine phys-
iological and biochemical indicators, remote sensing may 
be used to obtain instantaneous crop growth conditions, but 
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it cannot entirely explain the interaction between crops and 
the environment, and there are often discontinuities in time 
(Jin et al., 2016).

The assimilation of remote sensing data and crop growth 
models can be used to monitor crop growth and development 
in time and space on a continuous basis, and to improve the 
prediction accuracy and scope of application of the model 
(Dorigo et al., 2007; Huang et al., 2018). Data assimila-
tion originated in the field of meteorology and is used in 
the practice of weather forecasting, oceanography, and 
hydrology (Charney et al., 1969). In 1979, the assimilation 
method was first used to couple remote sensing informa-
tion and crop models to predict crop yields (Wiegand et al., 
1979). In recent years, more and more studies have proved 
that using data assimilation methods to fuse remote sens-
ing information with crop growth models is an important 
way to improve regional crop yield prediction (De Wit and 
van Diepen, 2007; Jiang et al., 2017). The purpose of data 
assimilation is to combine all possible information (mod-
els, observations, prior data, statistical data, etc.) in order 
to obtain the best estimate of the state of the agricultural 
system. Currently, the methods of remote sensing and crop 
model assimilation are for the most part parameter optimi-
zation and update methods (Wu et al., 2021).

The parameter optimization method uses all of the 
remote sensing data in a time window to re-adjust the ini-
tial parameters of the crop model through an optimization 
algorithm in order to minimize the difference between the 
model's simulated value and the remote sensing observa-
tion value, this achieves the purpose of optimizing the crop 
model. Commonly used optimization algorithms are the 
maximum likelihood method (Dente et al., 2008), com-
pound hybrid evolutionary algorithm (Shen et al., 2009), 
simulated annealing algorithm (Jin et al., 2016), particle fil-
ter algorithm (Li et al., 2015), variational algorithm (Huang 
et al., 2019), etc. However, the accuracy of the parameter 
optimization method is affected by the assimilation vari-
ables, optimization algorithms, cost functions, the number 
of effective remote sensing observations, and the inversion 
accuracy of remote sensing on the assimilation variables 
(Wu et al., 2021), also, parameter optimization requires 
a considerable time span for iterative operations (Bai et al., 
2019). The update method uses remote sensing observations 
to continuously correct the state variable trajectory of the 
model in order to bring the model closer to the real situation. 
It is an assimilation method that is continuous with time and 
may be applied to real-time prediction (Huang et al., 2016). 
The ensemble Kalman filtering algorithm (EnKF) has 
become a potent method among the various update methods 
due to the favourable processing ability of nonlinear obser-
vation operators (Li et al., 2011; Ma et al., 2013).

At present, the focus of ongoing research is concerned 
with remote sensing and crop model assimilation (Weiss 
et al., 2020; Jin et al., 2018). The uncertainty of model 
simulation (Tang et al., 2018) combined with uncertainty 

concerning the inversion of crop traits by remote sensing 
(Houborg et al., 2015), different data assimilation algo-
rithms (Bai et al., 2019), and the choice of assimilation 
parameters (Ma et al., 2013) will all affect the assimila-
tion results. Researchers have already used crop models 
under latent variable conditions to reduce model uncertain-
ty (Huang et al., 2019; Huang et al., 2012), and they also 
use more efficient and accurate assimilation algorithms to 
reduce errors in the assimilation process (Wu et al., 2021; 
Xing et al., 2017), as well as using multi-source remote 
sensing data to reduce the uncertainty of remote sensing 
inversion (Pan et al., 2019) to improve the accuracy of 
assimilation. However, the effects of different water and 
irrigation conditions on crop models and remote sensing 
assimilation results are not clear, this research is based on 
the ensemble Kalman filter algorithm, and uses the poten-
tial mode and water limitation mode of the WOFOST crop 
model assimilation with MODIS remote sensing data to 
predict the wheat yield under different climate and irrigation 
conditions, with a view to forecasting the regional wheat 
yield under different production and management condi-
tions to provide a theoretical basis for crop management.

MATERIALS AND METHODS

Henan Province is a major wheat-producing province 
in China. According to data from the National Bureau of 
Statistics (http://www.stats.gov.cn/), Henan's wheat out-
put accounts for about 26-28% of the country's total wheat 
output. Henan has a vast territory (31°23'-36°22'N, 110°21'-
116°39'E), and belongs to the eastern monsoon region of 
China, straddling the two natural regions of the northern 
subtropical zone and the warm temperate zone. The four sea-
sons are distinct throughout the year, the climate is mild, and 
the transition from the northern subtropical zone to the warm 
temperate zone is obvious. The annual average temperature 
of the province from north to south is 283.65-289.85 K, the 
average annual precipitation value is 407.7-1 295.8 mm, and 
rainfall reaches its highest value from June to August. The 
frost-free period of the year lasts from 201-285 days, which 
is suitable for growing a variety of crops. The soil types of 
the province, its climatic characteristics, production condi-
tions, farming systems, and yield levels are quite varied.

The experiment was conducted from 2019 to 2020 and 
Huaxian, Neihuang, Yuanyang, Jiaozuo, Xiuwu, Xuchang, 
Shangqiu, Luohe, Zhoukou, Kaifeng, Luoning, Ruyang, 
Pingyu, Luoshan, and Xixia, Dengzhou, and Fangcheng 
counties were selected in Henan Province. Sampling 
was carried out at 17 test sites such as Dengzhou, and 
Fangcheng. The specific distribution of the test sites is 
shown in Fig. 1, and the specific sowing, harvesting, and 
irrigation conditions of each test site are shown in Table 1. 
The leaf area index (LAI) of the examined wheat was 
determined using the canopy analyser LAI-2200C (PCA; 
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LI-COR Inc., Lincoln, NE, USA) during the four overwin-
tering, jointing, flowering, and filling periods of wheat. The 
final output is measured at the time.

The weather data comes from the NASA Power database 
(https://power.larc.nasa.gov/). This database has been wide-
ly used in agricultural modelling, crop yield simulation, etc. 
(Bai et al., 2010). The soil data came from the 1:1 000 000 
Chinese soil data set (Shangguan et al., 2013), Soil Water 
Characteristics software (Saxton and Rawls, 2006) was used 
to convert the required soil parameters such as the maxi-
mum field water-holding capacity, permanent wilting point, 
and field saturated water content. MODIS remote sensing 

data are obtained from the Earth Observation System por-
tal website (http://eospso.gsfc.nasa.gov/). In this study, 
MODIS-LAI data products MCD15A3/MCD15A3H were 
used, and MODIS-LAI was corrected using S-G filtering 
(Huang et al., 2015; Xu et al., 2011) and measured values.

When calibrating the model, it is necessary to calibrate 
the growth period. In the WOFOST model, the development 
of crop phenology is mainly controlled by the accumulated 
temperature. For wheat, it is also affected by the photoperiod 
and vernalization (De Wit et al., 2019). Based on a study of 
the sensitivity of WOFOST model parameters by Xu et al. 

Ta b l e  1. Production conditions of sites

Sites Sowing date (2019) Maturity date (2020) Irrigation date (70 mm each time)

Dengzhou 10/29 5/26 2019/12/20 2020/4/29

Fangcheng 10/27 5/26 2019/12/5 2020/2/25

Huaxian 10/19 6/1 2020/3/22 2020/5/12

Jiaozuo 10/18 6/1 2019/12/27 2020/3/15 2020/4/22

Kaifeng 10/23 5/28 2019/10/20 2019/11/25 2020/3/20
Luoshan 10/20 5/23
Luoning 10/16 6/5
Luohe 10/23 5/26 2020/3/15 2020/4/30
Neihuang 10/18 6/1 2019/11/20 2020/3/15 2020/4/1 2020/5/5
Pingyu 10/23 5/25
Ruyang 10/20 5/29
Shangqiu 10/18 5/28
Xixian 10/20 5/23
Xiuwu 10/21 5/31 2019/11/5 2019/12/25 2020/3/12 2020/4/4 2020/5/11
Xuchang 10/18 5/27 2019/10/28 2020/3/14 2020/5/4
Yuanyang 10/11 5/29 2020/3/10 2020/4/30 2019/12/20
Zhoukou 10/22 5/27 2020/3/14 2020/5/5

Fig. 1. Distribution of sample.
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(2021), it was found that the dry matter conversion efficiency 
(CVO), the maximum light energy utilization rate of a sin-
gle leaf (EFFTB40), the maximum CO2 assimilation rate 
of a single leaf (AMAXTB1. 3) and the extinction coeffi-
cient (KDIFTB2.0) all have a great influence on the yield. 
The parameter specific leaf area (SLATB0 and SLATB0.5), 
root and leaf dry matter partition coefficient (FRTB0 and 
FLTB0), extinction coefficient (KDIFTB0 and KDIFTB2.0) 
and the leaf life (life span of leaves growing at 35°C, SPAN) 
are sensitive to LAI, and it was also found that the sensi-
tive parameters of LAI will change with the growth period. 
When the moisture level is insufficient, priority should be 
given to parameters related to early light interception such as 
KDIFTB0 and SLATB0. Parameters sensitive to LAI and out-
put (such as KDIFTB2.0) need to be adjusted simultaneously.

This study is based on the measured data of Huaxian 
HX, Kaifeng KF, Luoning LN, and Xixian XX, using the 
SUBPLEX optimization algorithm (Rowan, 1990) to con-
struct the cost function of the measured and simulated 
values in order to optimize the sensitive parameters, and 
the calibrated model was verified in other regions.

When assimilation parameters are being selected, it is 
important to select those that are sensitive to LAI and yield 
for assimilation. A sensitivity analysis of the WOFOST model 
shows that water stress is a key factor affecting the sensitiv-
ity of the parameters. Therefore, when assimilating models and 
remote sensing data in different regions, it is necessary to fully 
consider the local water supply such as rainfall and irrigation. 
Based on the results of the parameter sensitivity analysis (Xu 
et al., 2021), the sensitivity of the WOFOST model parameters 
can be divided into the following categories: under the con-
dition of sufficient moisture, the parameters sensitive to LAI 
are TDWI, SLATB0, FRTB0, FLTB0, SLATB0.5, KDIFTB0, 
KDIFTB2.0, SPAN. Yield-sensitive parameters are CVO, 
AMAXTB1.3, EFFTB40, KDIFTB2.0, SLATB0.5. Parameters 
sensitive to both LAI and yield are SLATB0.5 and KDIFTB2.0, 
while in the case of insufficient moisture, the parameters sensi-
tive to LAI are TDWI, SLATB0, FRTB0, FLTB0, SLATB0.5, 
KDIFTB0, KDIFTB2.0, SPAN, and PERDL. Yield-sensitive 
parameters are SLATB0, FRTB0, FLTB0, KDIFTB0, and 
CVO. Parameters that are sensitive to both LAI and yield are 
FRTB0, FLTB0, SLATB0, and KDIFTB0. The specific param-
eter selection is shown in Table 2.

The SUBPLEX algorithm is a seed spatial search algo-
rithm. It is based on the Nelder-Mead (NMS) simplex 
search algorithm which identifies an improved set of sub-
spaces and then searching for each subspace. This method 
has a higher computational efficiency than the simplex 

search or forced search method. In the picture alignment 
process of the model, it is first necessary to build a cost 
function, the cost function f(x) generally uses the root mean 
square error (RMSE), see formula:

f (x) =

√

√

√

√

1

n

n
∑

i=1

(xs − xo)
2
, (1)

where: n is the number of observations, and xs and xo repre-
sent the simulated and observed values, respectively.

In addition, the algorithm sets a relative convergence tol-
erance (ε) or the maximum number of iterations at runtime in 
order to determine the termination condition for the optimi-
zation. ε determines the threshold for the convergence of the 
cost function, and theoretically, the smaller the ε value, the 
higher the assimilation accuracy. However, a lower conver-
gence tolerance can greatly increase the computational cost.

The Ensemble Kalman filter is a sequential assimilation 
algorithm, which introduces the concept of an ensemble based 
on the Kalman filter, and it is capable of estimating the covari-
ance of model prediction using the ensemble method. The 
Ensemble Kalman filter is based on the implementation of the 
Monte Carlo Kalman filter, which can be used for extremely 
high-dimensional, nonlinear and non-Gaussian state estima-
tion problems (Roth et al., 2017; Huang et al., 2016; Ma et 
al., 2013). The basic process is to establish a set of state vari-
ables, the set contains all of the possible values of the state 
variables, and the average value of each set member is used 
as the best estimate of the state variable. All members of the 
set move forward through the model. When there are addi-
tional observations, all members in the set are updated through 
the observations. If there are no additional observations, it is 
dynamically updated through the running results of the model 
The basic principle of Kalman filtering is the assumption of 
an n-dimensional state variable x and an m-dimensional state 
variable y, the state variable error at time k is vk and the obser-
vation error is ek, by setting cov(vk)=Q, cov(ek)=R, then:

xk+1 = Fxk +Gvk , (2)

yk = Hxk + ek . (3)

The update and prediction of the mean value and the 
covariance matrix of the state variable x are x̂k|k  and Pk|k :

x̂k+1|k = Fx̂k|k , (4)

Pk+1|k = FPk|kF
T +GQG

T
. (5)

For a set with N members, x̂k|k  and Pk|k may be expressed 
as:

x̄k|k =
1

n

N
∑

i=1

x
(i)

k
≈ x̂k|k , (6)

P̄k|k =
1

N − 1

N
∑

i=1

(x
(i)

k
− x̄k|k)(x

(i)

k
− x̄k|k)

T
≈ Pk|k . (7)

Ta b l e  2. Assimilation parameters under different conditions

Water conditions Assimilation parameters

Latent mode SLATB0.5, KDIFTB2.0, SPAN

Water restriction mode SLATB0, KDIFTB0, SPAN
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In the formula, N is the number of set members, and i is 
the member index.

According to the characteristics of the vegetation growth 
curve, Chen et al. (2004) proposed an envelope filtering 
method based on S-G filtering to reconstruct higher-quality 
remote sensing data. The specific operation is shown in 
Fig. 2, the data with cloud pollution is linearly interpolated, 
followed by an S-G filtering formula as follows:

gj =
i=r
∑

i=−r

cifi+j , (8)

where: g is the filtered data, f  is the raw data, c is the weight 
coefficient, r is the 1/2 filter window, j is the original data 
index, and i is the index within the data window.

After S-G filtering, it is assumed that the local minimum 
value of the original data is uncertain, and the local maxi-
mum value is the true value. The local minimum is replaced 
by the filtered value. The iteration process continues until 
the standard deviation between the filtered value and the 
pre-filtered value reaches the set threshold, and then it ends:

N t

i
=

{

Oi if Ot−1

i
> N t−1

i

N t−1

i
if Ot−1

i
< N t−1

i

, (9)

where: O and N are the initial and filtered values, t is the 
index of the iteration, and i is the index of the data.

This study uses LAI as the assimilation variable to 
assimilate the WOFOST model and MODIS remote sensing 
data. The assimilation parameters of the model which are 
coupled with remote sensing must be selected with a great-
er degree of uncertainty in different regions, and parameters 
that have a close correlation with the assimilation variable 
(LAI) are chosen, preferably using the target output vari-
able (yield) (Wu et al., 2021). Based on Xu et al. (2021) 
the sensitivity of the WOFOST model parameters under 
different water and irrigation conditions were analysed. It 
was found that water stress is an important factor affecting 
the sensitivity of the WOFOST model parameters. It was 
also found that water stress is an important factor affecting 
the sensitivity of the WOFOST model parameters. Under 
water stress conditions, the parameters related to early light 
interception (specific leaf area SLATB0 when DVS=0, 
extinction coefficient KDIFTB0 when DVS=0, etc., where 
DVS represents the phenological development stage of the 
WOFOST model, 0 represents seedling emergence, 1 rep-
resents flowering, and 2 represents maturity) will become 
the main factor affecting the model results. Therefore, 
using the EFAST sensitivity analysis algorithm (Saltelli et 
al., 2008), the parameters of SLATB0, KDIFTB0, and the 
specific leaf area SLATB0.5 when DVS=0.5 and the extinc-
tion coefficient KDIFTB2.0 when DVS=2.0 were selected 
for sensitivity analysis at each location. With regard to the 
water conditions in different regions, assuming that the sen-
sitivity of SLATB0 and KDIFTB0 is greater than that of 
SLATB0.5 and KDIFTB2.0, respectively, it is considered 
that the local water supply is insufficient, and vice versa.

Specific leaf area (Specific leaf area at growth, SLATB) 
is easily affected by factors such as variety, soil, planting 
density, etc. (Meziane and Shipley, 2002; He et al., 2019), 
and also has a large spatial variability. The extinction coeffi-
cient is closely related to the leaf angle (Wang et al., 2007), 
row spacing (Flénet et al., 1996), and other factors. In addi-
tion, leaf life (SPAN) is the determinant of LAI in the later 
stage of wheat growth, and SPAN reflects the influence of 
water, nutrients, weeds, diseases, and insect pests on LAI to 
a certain extent, also, there is a significant degree of uncer-
tainty in large range application (Bai et al., 2019; De Wit 
et al., 2012), so it is also considered to be an assimilation 
parameter. Therefore, SLATB0.5, KDIFTB2.0, and SPAN 
were selected to be the assimilation parameters when the 
water supply is sufficient. When the water supply is insuf-
ficient, SLATB0, KDIFTB0, SPAN should be selected as 
the assimilation parameters. When the water supply sta-
tus is not considered, SLATB0.5, KDIFTB2.0, SLATB0, 
KDIFTB0, SPAN should be selected in this case.

In order to explore the influence of different produc-
tion conditions and also different parameter choices on data 
assimilation two modes of WOFOST model, latent and water 
restriction (the water conditions in all regions under the latent Fig. 2. Flow chart of S-G envelope filter.
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model are sufficient) were selected for assimilation. Model 
and remote sensing assimilation of different water supply 
conditions were carried out in each mode. The LAI of remote 
sensing observations is determined by matching the GPS 
position information of the sampling points with the MODIS 
position information.The specific process is shown in Fig. 3.

RESULTS AND ANALYSIS

The WOFOST model can better simulate the flower-
ing and maturity of wheat in Henan Province, and also, 
the model's average calibration error and average verifi-
cation error are both within the two-day range (Table 3). 
The calibration error of the model in the Huaxian, Kaifeng, 
Luoning, and Xixian areas was 0.75 days during the flow-
ering and maturity periods, and the errors verified in the 
other areas were 1.62 and 1.08 days, respectively. Among 
them, simulation errors of the flowering period in Shangqiu 
and Dengzhou are relatively large, and are 3 and 4 days 
earlier than the observed value, respectively. The simula-
tion errors of the mature periods of Xiuwu and Dengzhou 
are relatively large, they are 3 and 4 days earlier than the 
observed values, respectively. The simulation of Ruyang's 
flowering period was 3 days later than the observed value. 
The simulation errors of the flowering and maturity periods 
in other regions were within 2 days of the actual times.

Remote sensing data are susceptible to factors such as 
clouds and atmospheric sols, several observational drops 
are prone to occur in a given time series, which obviously 
violates the growth law of crops. In this study, S-G enve-
lope filtering was used to de-dry the MODIS data. Using the 
measured LAI values in the field, the ratio coefficient was 
established from the measured data of different growth peri-
ods of wheat, and the MODIS data was corrected, the results 
are shown in Fig. 4. For comparison, the original MODIS-
LAI has several sharp drops in the time series, and the data 
resulting from S-G envelope filtering can better remove the 
noise of the MODIS data thereby making the curve of the 
LAI smoother while retaining the change trend of LAI with 

the fertility period. After the measured value correction, the 
LAI curve maintains the LAI change trend after filtering, and 
increases the value of LAI, so that the value of LAI is closer 
to the measured value. The calibrated MODIS data basically 
conforms to the actual change curve of LAI, thereby reduc-
ing the systematic error of the MODIS data.

The calibrated WOFOST model is capable of reflecting 
the exponential growth of wheat LAI in Henan Province 
after the emergence of seedlings. Wheat stops growing 
during the overwintering period. After the overwintering 

Ta b l e  3. Observed phenology and the simulated phenology of 
the model in various sites, 2020

Site Anthesis Simulated 
anthesis

Mature 
date

Simulated 
mature 

date

Anthesis 
error

Mature 
date 
error

Huaxian 4/25 4/24 6/1 5/30 –1 –2

Kaifeng 4/22 4/22 5/28 5/28 0 0

Luoning 5/3 5/1 6/5 6/6 –2 1

Xixian 4/15 4/15 5/23 5/23 0 0

Calibrated average 0.75 0.75

Dengzhou 4/17 4/14 5/26 5/22 –3 –4

Fangcheng 4/18 4/18 5/26 5/26 0 0

Jiaozuo 4/26 4/28 6/1 6/2 2 1

Luoshan 4/15 4/15 5/23 5/23 0 0

Luohe 4/18 4/19 5/26 5/26 1 0

Neihuang 4/24 4/25 6/1 5/30 1 –2

Pingyu 4/17 4/17 5/25 5/24 0 –1

Ruyang 4/21 4/24 5/29 5/30 3 1

Shangqiu 4/26 4/22 5/28 5/29 –4 1

Xiuwu 4/24 4/22 5/31 5/28 –2 –3

Xuchang 4/19 4/21 5/27 5/27 2 0

Yuanyang 4/21 4/23 5/29 5/29 2 0

Verification average 1.62 1.08

Fig. 3. Assimilation process.
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period, the wheat grows rapidly and reaches its maximum 
value around the booting stage, and the LAI begins to 
decrease during the reproductive growth stage. The char-
acteristics of this change are shown in Fig. 5. Moreover, 
the performance results in Huaxian, Kaifeng, Luoning and 
Xixian counties are better. The R2 of the simulated and 
measured values in the four regions is between 0.87-0.98, 
and the RMSE is between 0.34-0.79. Among them, the LAI 
in the jointing period of Luoning was underestimated, and 
the LAI in the flowering period in Huaxian and Xixian was 
overestimated. The accuracy of the LAI verification result 
is lower than that of the calibration result, the verified R2 is 
0.77, and the RMSE is 1.06.

The calibration results of the crop yield are shown in 
Fig. 6a. The calibration results of this yield in the four loca-
tions of Huaxian, Kaifeng, Luoning, and Xixian perform 

Fig. 4. Comparison of remote sensing data before and after cor-
rection: Ori – original data, S-G – data after S-G filter, Cor – data 
after correction, Obs – observation data.

Fig. 5. Calibration and validation results of LAI: a – HX, b – KF, c – LN, d – XX, e – validation.

LA
I
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well. The simulation errors of the four regions respectively 
are 0.29, 0.22, 0.34 and 0.10 t ha–1. The results of the verifi-
cation at 13 other locations are shown in Fig. 6b. The R2 of 
the verification results is 0.66 and the RMSE is 1.43 t ha–1. 
Compared with the simulation results, the model's error 
which was verified in other regions is larger. This shows 
that when the model is applied in different regions, the use 
of only one set of crop parameters will lead to obvious simu-
lation errors. Therefore, it is necessary to correct the model 
in combination with remote sensing data when it is applied 
to a particular region.

The sensitivity of the parameters SLATB0, KDIFTB0, 
SLATB0.5, and KDIFTB2.0 at each test site is shown 
in Fig. 7. Among them, Shangqiu, Pingyu, Luoning and 
Ruyang had less rainfall than average and no irrigation 
(Table 1), the sensitivity of SLATB0 and KDIFTB0 is much 
greater than that of SLATB0.5 and KDIFTB2.0, thus indicat-
ing that they are lacking in some respect. Although Xuchang, 
Jiaozuo, Huaxian, and Yuanyang were irrigated during the 
wheat growth period (Table 1), the sensitivity of SLATB0 
and KDIFTB0 was still greater than that of SLATB0.5 
and KDIFTB2.0. Although the areas with a greater degree 
of precipitation in the south (such as Luoshan and Xixian) 
had not been irrigated, the sensitivity of SLATB0.5 and 
KDIFTB2.0 is greater than that of SLATB0 and KDIFTB0. 
Overall, Jiaozuo, Pingyu, Shangqiu, Xuchang, Luoning, 
Ruyang, Yuanyang and Huaxian regions have an insufficient 
water supply. When selecting the assimilation parameters 

according to the water supply situation in the water restriction 
mode, select SLATB0, KDIFTB0 and SPAN as the assimila-
tion parameters. For other regions SLATB0.5, KDIFTB2.0 
and SPAN should be chosen as the assimilation parameters.

The 17 test sites were simulated and assimilated using 
models under potential production conditions, using two 
assimilation schemes: the first scheme (Assim1) did not 
distinguish between moisture conditions and took into 
account all parameters under the two moisture supplies 
(SLATB0, KDIFTB0, SLATB0.5, KDIFTB2.0 and SPAN) 
for assimilation. The second assimilation protocol (Assim2) 
is assimilated using assimilation parameters (SLATB0.5, 
KDIFTB2.0, and SPAN) under moisture-well-adequate 
conditions, as shown in Fig. 8. The simulation results (Sim) 
under potential conditions do not reflect the differences 
between the regions, and the simulation results are gener-
ally higher than the measured results, especially in areas 
with insufficient moisture (Neihuang, Yuanyang, Ruyang, 
etc.). After the assimilation of LAI information with remote 
sensing, the results of the simulation of the two assimilation 
schemes were significantly improved.

Seventeen test sites were simulated and assimilated 
using a moisture-constrained model, as shown in Fig. 9. 
Models under moisture limitations have been used success-
fully to reflect the yield differences between the regions. 
The results of assimilation in most areas are closer to the 
measured values than the simulation results.

Fig. 7. Parameter sensitivity of each site.

Fig. 6. Relationships between the simulated and the measured values: a – calibration yield, b – validation yield.
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The relationship between the measured results of the 
WOFOST model using the latent mode and the simula-
tion results and assimilation results is shown in Fig. 10. 
The model results under the potential production mode 
are not limited by moisture, and the simulation results 
have small differences between the different regions, 
and therefore cannot reflect the differences between the 
various locations. The simulated yield under the poten-
tial mode is distributed between 10-11.6 t ha–1, and the 
correlation with the measured value is weak, R2 is 0, and 
the RMSE is 2.5 t ha–1. Taking into account the assimila-
tion with LAI-sensitive parameters (SLATB0, KDIFTB0, 
SLATB0.5, KDIFTB2.0, and SPAN), the results have 
been significantly improved in comparison with the simu-
lation results, R2 increased to 0.48, and RMSE decreased 
to 1.56 t ha–1. The assimilation results using the assimi-
lation parameters (SLATB0.5, KDIFTB2.0 and SPAN) 

under sufficient water conditions were slightly improved, 
R2 increased to 0.50, RMSE was reduced to 1.47 t ha–1, 
but the improvement effect was minor.

In water restriction mode, the relationship between 
the measured results of the WOFOST model and both the 
simulation and assimilation results are shown in Fig. 11. It 
may be observed from the figure that among the different 
assimilation strategies, the assimilation results of selecting 
the corresponding assimilation parameters according to the 
water supply status of the different regions perform best. 
There is a good correlation between the model simulation 
results and the measured values in the water restriction 
mode, with an R2 value of 0.68 and an RMSE of 1.05 t ha–1. 
Both of the assimilation methods can be used to improve 
the simulation accuracy of the model. The R2 and RMSE 
of the assimilation results without taking into account 
the water difference between regions were 0.79 and 0.64 
t ha–1, respectively. According to the water conditions in 

Fig. 8. Comparison between the measured results with the 
simulation and assimilation results under potential conditions: 
Obs – observation, Sim – simulation, Assim1 – the assimilation 
value when considering all parameters, which are sensitive to LAI, 
Assim2 – the assimilation value of parameters under the condition 
of sufficient water supply.

Fig. 9. Comparison between the measured results with simula-
tion and assimilation results under water limited conditions. 
Explanation as in Fig. 8.

Fig. 10. Relationship between measured yield, simulated yield, and assimilated yield under potential conditions: a – simulated value and 
measured value, b – the assimilation value and the measured value of LAI-sensitive parameters were selected, c – using assimilation 
parameters under the conditions of sufficient water supply.
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the different regions, the R2 of the assimilation results cor-
responding to the assimilation parameters were increased 
to 0.86, and the RMSE was reduced to 0.51 t ha–1. As com-
pared with the simulation results, the RMSE of the two 
assimilation methods were reduced by 39.0 and 51.4%, 
respectively. Therefore, when the model is applied to a par-
ticular region, it is necessary to consider the water limit, and 
the use of remote sensing data to assimilate the model can 
effectively improve the simulation accuracy of the model.

DISCUSSION

The WOFOST model is better at simulating the phe-
nological period of wheat (Table 3), but the simulated 
values of the flowering and mature periods in Dengzhou 
and Xiuwu occur earlier than the observed values, while 
the simulated values of the flowering and mature periods 
in Ruyang both occur later than the observed value. This 
may be because the WOFOST model did not take into 
account the influence of water conditions on the growth 
period of wheat when simulating the development of wheat 
phenology. In Dengzhou and Xiuwu, excessive rainfall 
and irrigation water caused late ripening of wheat, while 
in Ruyang, the flowering time was advanced due to water 
stress (McMaster et al., 2019 ). At present, research con-
cerning crop phenology simulation is continuously using 
a wider scope, and many studies have begun to pay attention 
to the effects of nutrient stress (Singh and Wilkens, 2000) 
and even high-temperature stress (Hossain and Teixeira da 
Silva, 2012) on the development of crop phenology. The 
calibrated WOFOST model performed well in the simula-
tion of LAI and production, but the simulation accuracy 
of the model was significantly reduced when it was veri-
fied in other regions (Figs 5, 6). This may be because the 
crop model is a simplified simulation of the crop growth 
process, and the degree of parameterization of the model 
for crop growth needs to be improved (Yin et al., 2020). In 
addition, most models currently place a lower priority on 
factors such as diseases, pests, weeds, temperature stress, 
etc. with regard to crop growth (Rasche and Taylor, 2019), 
so there is a greater degree of uncertainty in the application 

of the model to a regional scale (Ramirez-Villegas et al., 
2017). Therefore, it is necessary to improve the regional 
simulation of the model in combination with the regional 
monitoring capabilities of remote sensing.

In previous studies, in order to reduce the model's uncer-
tainty, the model's production mode under latent conditions 
was often assimilated with remote sensing data (Ma et al., 
2013; Huang et al., 2015; Curnel et al., 2011). Since the 
potential model does not take into account the stresses of 
water, nutrients, etc., when this study uses the model under 
certain potential conditions to simulate, the results in the 
region are not satisfactory (Fig. 10a). However, after using 
remote sensing information to assimilate LAI, the simula-
tion results of the model show a good correlation with the 
measured results (Fig. 10b, c). In addition, when simulation 
and assimilation were performed using the model in a water 
restriction mode in this study, the R2 of the simulation result 
reached 0.68, and the R2 of the assimilation result reached 
0.79 or more (Fig. 11), this indicates that considering water 
supply assimilation can serve to improve the simulation 
accuracy, this is similar to the research results of (Pan et 
al., 2019) using remote sensing to monitor soil moisture 
and LAI. Based on remote sensing information and the 
WOFOST model (Jin et al., 2015) performed an assimila-
tion simulation of heavy metal stress in rice and simulated 
rice growth. These studies have shown that it is necessary 
to consider the various stresses that may be encountered 
during the actual growth cycle of crops when the model 
is applied to a particular region. In recent years, model 
simulation studies concerning high temperature, freezing 
damage and other adversity stresses have also been con-
tinuously strengthened (De Wit et al., 2019; Wang et al., 
2017). Therefore, water stress was considered in the pro-
cess of model assimilation, as it will provide a favourable 
foundation for the regional application of remote sensing 
and model assimilation.

When performing remote sensing and crop model assim-
ilation, the selection of appropriate assimilation parameters 
is also very important (Jin et al., 2018). Assimilation param-
eters must be selected and also assimilation variables (such 

Fig. 11. The relationship between measured yield, simulated yield, and assimilated yield: a – simulated value and measured value, 
b – the assimilation value and the measured value of LAI-sensitive parameters were selected, c – the results of using assimilation.
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as LAI), preferably at the same time, and the assimilation 
targets (such as output) should have strong correlation 
parameters, and these parameters are often difficult to 
obtain on a regional scale (Wu et al., 2021). At the regional 
scale, the climatic conditions and differences in manage-
ment measurements between different regions will affect 
the sensitivity of the model's parameters (Liu et al., 2019). 
Based on the sensitivity analysis results of the WOFOST 
model under different climate and production conditions 
(Xu et al., 2021), this study puts forward a selection strate-
gy for assimilation parameters under different water supply 
conditions, these changes amount to a significant difference 
and an improvement in comparison with previous studies. 
The assimilation results that did not distinguish between the 
water supply conditions according to the different regions 
and the corresponding assimilation parameters which were 
selected according to the water supply conditions between 
the regions are analysed. The study found that selecting the 
corresponding assimilation parameters based on the water 
supply characteristics of different locations can serve to 
improve the assimilation effect to a greater extent. Without 
distinguishing between the assimilation of water supply 
conditions, despite the fact that there are other assimilation 
parameters, the accuracy of the assimilation results is not 
improved (Figs 10b, c, and 11b, c), this is consistent with 
the research results of Ma (Ma et al., 2013).

This study used a sensitivity analysis of the parameters 
sensitive to water stress in order to determine the water 
supply under different climatic and production conditions. 
Based on the water supply situation, the corresponding 
assimilation parameter selection principle is proposed, 
which in turn improves the application of remote sens-
ing and crop model assimilation in different climate and 
production conditions. The data and research scope of this 
study is mainly focused on the Henan Province of China, 
therefore there may be some uncertainty in other areas, 
and a wider range of research data should be considered 
in future studies. This method can also be extended to the 
assimilation simulation of other crop models or other crop 
growth stress factors (such as nutrient stress, etc.). With 
the development of geographic information systems, big 
data, remote sensing and other information technologies, 
enhancing the analysis of climate and production condi-
tions will greatly promote the application of remote sensing 
and model assimilation on a regional scale.

CONCLUSIONS

In this study, the world food studies model was cali-
brated. The calibrated model can be used to improve the 
simulation of the wheat growth period in Henan Province, 
with the average simulation error occurring within the 
time period of 2 days. When leaf area index and yield are 
calibrated, the model produced better calibration results. 
The verification results originating from other regions are 

slightly worse. This shows that when the model is applied 
within a particular region, the model needs to be corrected 
with the appropriate remote sensing data.

1. The assimilation of wheat yield predictions based 
on Moderate-resolution imaging spectroradiometer remote 
sensing data and the world food studies crop model may be 
realized using the ensemble Kalman filter algorithm.

2. Based on a sensitivity analysis, the water supply situ-
ation of different test points was determined, and a suitable 
selection strategy of assimilation parameters under differ-
ent water supply conditions was proposed.

3. The results show that the use of the model under 
a water restriction mode and the use of the correspond-
ing assimilation parameters for assimilation modelling in 
combination with the water supply of different locations 
can effectively improve the application capabilities of crop 
models and remote sensing assimilation in different climate 
and management conditions.
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